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ABSTRACT 

iA UVA We give a detailed analysis of the m%o,,, ?G d operators that contribute 

to 1 AS ( = I, 1 AI ) = K amplitudes in the SU(3)co,or x SU(2) x U(1) gauge theory. 

We compute and compare the renormalization group improved coefficients of this 

and all other operators involved in the Hamiltonian paying particular care to the u - 

c GIM cancellation and the relevant short-distance scales. We give a brief 

discussion of matrix elements in the valence quark approximation. 

e Operated by Universities Research Association Inc. under contract with the United States Deaartment of Enerov 
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I. INTRODUCTION 

In a recent letter’ we have reanalyzed the coefficients of the dimension-6 

local operators occuring in the 1 AS 1 = 1 nonleptonic weak Hamiltonian, paying 

particular regard to the u-c GIM cancellation which affects the so-called 

“penguin” contributions. We have studied the log structure which occurs generally 

in multi-loop processes and find that the QCD radiative corrections for “penguins” 

are modified from those given in the standard analysis.2 This widens the gap 

between the experimental values and the theoretical results when one assumes the 

matrix element estimates of ref. (Z), and we are further led to argue for substantial 

modifications in the values of operator matrix elements. Hence, the A I = fi rule, if 

it can be said to be a theoretical “prediction” at all, appears to be due to the 

cumulative effects of the many 1 AI ) = y2 operators that are induced by QCD in the 

SU(2) x U(1) electroweak interactions, rather than the dominant effect of a single 

operator. 

We must be careful to include the effects of all local operators that can 

occur in the nonleptonic weak Hamiltonian. Presently we extend to completion the 

analysis of operator contributions by computing at the two-loop level the 

coefficients and anomalous dimensions of the d = 5 operators needed to complete 

the basis. In a purely left-handed weak interaction theory one must go to the two- 

loop processes of Fig. 1 including the mass insertions of s and d quarks. The only 

new operators we need consider are of the generic form of a “glue-anomalous 

magnet moment” and can be written: 

0 fl mSa iA li’JAd 
w -TG (1) 



-3- FERb!ILAB-Pub-79/82-THY 

where GuuA is the gluon field strength (we specify the exact mass and chiral 

structures below). Such operators have been considered previously in the context 

of vectorlike theories3-5 and as arising by I-Eggs boson exchange.6 

In the purely left-handed theories estimates have been performed by including 

mass insertions external to l-loop diagrams.’ An exact calculation in two-loops is 

performed presently. This is a nonleading log contribution at the two-loop level, 

the leading log vanishing by chirality. There are subtleties that arise in connection 

with the Becchi-Rouet-Stora (BRS) Ward identity which allows the existence of 

gauge non-invariant counterterms in the diagrams of Fig. (1, 2). These difficulties 

can be circumvented easily by using the Gordon-decomposition of the 1 AS 1 = I 

weak current, which includes mass effects of the form in eq. (l), but which allows 

computing only terms other than the o UV vertex. This is effectively equivalent to 

working “on-shell” in which case the BRS-allowed gauge non-invariant counterterms 

vanish. We are careful, however, to check this result with a detailed “off-shell” 

calculation in which we construct and isolate the effects of the gauge non-invariant 

counterterms. This technical analysis is relegated to the appendix. Our resulting 

coefficients and anomalous dimensions have been explicitly checked for gauge (a) 

invariance in a covariant gauge. 

The resulting coefficient of this new operator, including the QCD radiative 

corrections summed by the renormalization group, is obtained and compared to the 

previous calculation of all other d = 6 operators of ref. (I). We find that the 

resulting coefficient is roughly two orders of magnitude smaller than the largest 

“penguin” coefficient. We give a crude estimate of matrix elements in Section IV. 

This leads to an extra factor of &I GeV) in the contribution of the new operator 

and hence, the net effect is in the range (l/IO to l/100) that of penguins. Hence, it 
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is unlikely that the d = 5 operator contributes significantly to the nonleptonic weak 

Hamiltonian. Furthermore, higher order QCD effects are probably small in 

general. 

We feel, however, that the analysis of the full operator structure including 

the operator of eq. (1) is an interesting and illustrative example in the application 

of QCD to experimentally accessible problems. 

II. OPERATORS 

The effective nonleptonic weak Hamiltonian has the form: 

H wk = aGFcos Bc sin Bc 1 Cj(MW2, m2, as, p2)C?j 2 
I u 

where the coefficient functions Cj in general depend upon the W-boson mass, MW, 

and any other (e.g. quark) mass scales, together with the strong coupling constant, 

2 as = g2/4n, and an operator normalization point u . The operators are ordered 

according to their dimension; the leading contribution coming from d < 6 operators. 

1 AS 1 = 1 operators of d : 4 do not appear after renormalization. 

There are many candidate d ( 6 ) AS) = 1 operators that could occur in eq. 

(11, but upon use of algebraic relationships and equations of motion one finds a 

minimal basis of independent d = 6 four quark operators and two d = 5 quark-quark- 

gluon operators.5 These are the following: 

0;’ = :yudL&” cL - ;YpcL+udL 

fl;’ = ;YvdL+L +SypcL+‘dL 

oIu = :yvdL+uuL -3YuuL”YudL 
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g2’ = :y,,dL+uL +:y,,uL;yudL + 2;y,,dLaypdL + 2:Y1-IdLzyFls L 

o5 = :y,XAdL(;y”AuR + ay”‘dR +:Yp”sR + cY’AAcR) 

06 = :yudL(uypuR + ;iy”dR + 3~“s~ + Fy’c,) 

g7’ = - 
m~sRa~ v 

‘GdLC’vA ?m>Lopv ‘QdRCuVA (3) 

where we have followed ref. (2) ( o3 and o4 are omitted, AI = 3/2 operators). 

AA are Gell-Man SU(3) matrices and G &IV*. IS the gluon field strength tensor. 

The coefficients and anomalous dimensions of the operators { o,‘,... 04} 

have been computed and used elsewhere.1’2 These calculations are not affected by 

the presence of 07’ because the mixing matrix is triangular. This is a conse- 

quence of the fact that d = 6 operators can mix down into d q 5, but not vice versa; 

triangularity guarantees that the d = 6 eigenvalues do not change when 0; is 

included. 

Our task is to include the extra effects of 07’ by computing the 

coefficients, C /’ with full QCD radiative corrections, summed by the renormali- 

zation group. In the standard SU(3)c x SU(2) x U(I) model, f17’ cannot appear in 

the Hamiltonian, eq. (l), until two loops as in Fig. (1). We will compute the 

coefficients of 07’ and the anomalous dimensions for { g,‘,..., g4} + 07’ 

in the approximation of neglecting l/N terms relative to leading N terms in SU(N) 

of color. 
+ 

C,- will be obtained by including the QCD effects that mix 

I CIC’..., c,l+ c7 . 

The diagrams of Fig. (1,2) are actually finite by the GIM cancellation so we 

must treat mixing from d = 6 operators into d = 5 with great care. As discussed in 
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ref. (I), by explicit calculation of the logs occuring in two-loop Feynman diagrams, 

we expect QCD corrections to go as (g210g mc 2/~2)p for those operators that 

involve a u - c cancellation. This differs from the treatment of ref. (2) in which 

terms like (g ) 2 p*q(log mc2/~2)P(log MW 2/lJ 2)q are encountered. 

In the following section we obtain the desired renormalization group improve- 

ments for C 7? by integrating the relevant anomalous dimensions between m =!.I to 

m =m 
C’ We discuss the simplified evaluation of the new operator anomalous 

dimensions. 

III. COMPUTATIONS 

The actual calculation of the coefficients and anomalous dimensions for 

{d = 6} + g7? in the diagrams of Fig. 1 is first simplified by using operator 

techniques and to compute, instead, the diagrams of Fig. 2. For our particular 

operator this produces a result valid to o(l/MV,4). 

The calculation is complicated by the effects of BRS allowed gauge non- 

invariant counterterms and a naive calculation of the u 
w q 

” vertex in Fig. 2 

produces an incorrect result and one which is a-dependent in a covariant gauge. 

This is due to the fact that a part of this term resides in a gauge non-invariant 

operator counterterm. These problems are circumvented by working “on-shell” (as 

far as diagram numerators are concerned) by using the Gordon decomposition of the 

current to write: 

iu V 

w q 
= -(p + p’ju + (masses) x y u 

and then extract the coefficient of the (p + p’),, term. This is essentially repre- 

senting the use of quark equations of motion in all diagrams, whence the gauge non- 

invariant operators vanish. 
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We find that the (p + p’) 
F! 

term has a coefficient of rj in Fig. (2) which 

produces an “on-shell” result: mst~R(o)d,) - mdGL(o)dR). This is a quick way of 

seeing that only (“T7(-) 1s mvolved in the weak Hamiltonian at the two-loop level 

and that 07(+) h as zero coefficient and mixing. 

We have carefully verified that this result is consistent with an “off-shell” 

analysis and produces an CL -independent result in covariant gauge QCD. Here one 

constructs all allowed gauge non-invariant counterterms consistent with the BRS 

Ward identity.8 We then extract the coefficient of the physical operators 07* . 

There are seen to be terms superficially associated with the structure of O,(+), 

but in fact these terms are part of the gauge non-invariant counterterm Y4 + Y5 

(eq. (A.1)). The gauge non-invariant operators can have no physical effects; their 

anomalous dimensions are o-dependent in general, but mixing to them is triangular 

and they have zero matrix elements.8 The anomalous dimensions for 

07t + q’ are obtained in ref. (4,5,6) where similar subtleties also arise. 

The resulting anomalous dimension matrix for the operators of eq. (3) (acting 

upon coefficient functions) is the following: 

y(g, m2, u2) = - liY ? 
16tr2 

(4) 

where, in the approximation of ignoring quark masses, ? takes the form: 
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9 - ; 

$ 
2 -- 
9 

$ 

6 

0 

;f 

; -; -9 10 16 -_ _ 

--q 

0 0 

CIC 

-2 _ $ 6 10 
_- 

9 -- 8 9 O 0 C2c 

2 
9 4-G ss q 0 0 Cl” 

-- ; 6 -24 -; 0 0 C2u (5) 

4 I 
c -; 4 ; o c5 

0 0 0 5 0 0 C6 

3 
_- $f -$f -;f 6f -; C7 

_- 

Here, f is defined by 

f = -g-(V) 
16i~~ ’ 

(6) 

as determined by the evaluation of Fig. (2). 

The renormalized coefficient functions Ci are obtained as the following 

solution to the renormalization group equations: 

ci = 1 T 

Pi2 

exp I 
j 

y(g, m2)dd 

!J2 > 

c Qi) 
m2 ij j 

where Cjcoyi) IS an appropriate boundary condition for the ith coefficient and u. 2 is I 

an appropriate upper mass-squared limit. For the coefficients C -u-u-c-c 
I ’ 3 ‘Cl 75 

we follow the usual Lee-Gaillard prescription which agrees with the fact that Mw2 

sets the scale of short distances for these operators and the boundary conditions 

are just those coefficients obtained in the tree approximation: 

(7) 

5 
04 = - 1 , c20yu = 4 , ClOjC = 1 , c20J = -, , c-0 = C60 = c 0 = 0 . 7 (8) 
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For the renormalized coefficients C5, C, and C7 we must be more careful. 

We must include the mass effects in the anomalous dimension matrix and carefully 

isolate the short-distance scale. For the sliding mass scale range u2 < m2 ( mc2 

only up quark loops should be included in the anomalous dimension matrix, whereas 

for m2 > m ’ c the charm quark effects “turn on.” This is the picture of ref. (2) and 

it can in principle be made rigorous by including mass effects explicitly in y. 

We depart from the analysis of ref. (2) however in the choice of pi2 for i = 5, 

6 and 7. The explicit analysis of two-loop (and multi-loop) Feynman diagrams of 

ref. (I) indicates that it is only mCL and not MW’ that sets the scale of short- 

distance for both penguin and sigma operators. Hence, the renormalization group 

must sum a series in g 2p(log mc2/~2)P as opposed to the inclusion of 

g 2(p+q)(Iog mc2)hIog MW 2)q terms encountered in (2). Hence, we obtain for the 

coefficients C5,6,7: 

(9) 

where 

y = ;2c = 0 ; CIU = -1 ; c^2u = $ ; c5 = e6 = c, = 0 . (IO) 

It is convenient to go into a new basis in which the 7 x 7 y matrix of eq. (5) 

is reduced. We define: 

A = fllu- g’ B = f12”- 5 f12’ 

(IO) 

c = 0,” + OIC D = G2u+2 c?;? q, 06, @-) 
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in which the anomalous dimension matrix q is block diagonal: 

. c 0 

Y= 

L I 0 q2 

where, 

and 

q2 = 

?I =[: J[:j 

-32 14 
-3 

16 
-3 3 0 0 

G -- 25 9 _- 8 9 0 0 

f - 2 5 3 2 0 

0 0 16 
-3 0 0 

;f - 2f +f 6f 2’ 
_- I- - - 

- - 

CC 

52 

C5 

‘6 

C7 

(11) 

We calculate Cl’ and C2” using the coefficients of eq. (8) and ui2 = MW2. 

This gives CA0 = -1 and CBo = l/5 and we need only the terms involving ? 1 in eq. 

(7) since C O 
- - 

D = Cc0 = C5’ = C6’ = C7’ = 0. To calculate C5, 
I 

C6 and C7 we need 

only the up quark loop contributions with coefficients given by eq. (IO). This gives 

cc0 = -l/2, CD0 = 
- - 

l/7 and for C5, C6 and C7 we need only use the terms involving 

T2 in eq. (9). 

(12) 
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We evaluate eq. (7) directly by computer writing 

6M 2 
I+” Y(;~(M,)) C.(O) 

j n=l Mn2 ij (ordered) ’ 
(13) 

with MN2 = Mi2 and M,2 = p2, and the product is ordered with the largest Mn2 

(smallest g(Mn)) to the right. We evaluate the ci using the above methods for 

different choices of mc2 and A (the strong coupling constant parameter). These are 

presented in Table I. We have also recalculated the coefficients C5 and C6 using 

the methods of ref. (2) with our parameters mc 2 A for comparison in Table II. For , 

the usual choice, A = 500 meV, we have ccs(l GeV) 2 1. Varying A may be regarded 

as varying p with fixed A. 

We 6ee that c7 is an order of magnitude smaller than c,. In the following 

section we will estimate the matrix elements of the operator 07(-). 
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IV. HAMILTONIAN AND MATRIX ELEMENTS 

The effective nonleptonic weak Hamiltonian is the following: 

H wk = 0GFcos6csinec [I Cj gj] 
I 

where Cj are presented in Table I under various assumptions about A and mc2 and 

2 
MW * 

In order to compare the Hamiltonian with experiment it is necessary to 

estimate the matrix elements of the contributing operators. This is unfortunately, 

the “weak link” in the chain of analysis. 

In ref. (2) a valence quark approximation has been used to estimate the 

contributions of ol’, f12”, q and < to different A I q K processes. Large 

results are reported for the matrix elements of o5 in that the simultaneous use of 

the vacuum insertion and quark equations of motion lead to contributions like 

mrr2/msmu. The use of current quark masses, mS = 150, mu = 5 mev enhances these 

amplitudes enormously. Taken together with the coefficients C5 and c6 estimated 

by the methods of ref. (21, which we have reproduced for comparison with our 

assumptions about A and mcL in Table II, agreement with experiment is obtained to 

within a factor of 2. Unfortunately, this gap widens if we use our revised estimates 

for C5 and C6 in Table I. In ref. (I) we argue that 05 does not have large matrix 

elements since the constituent quark masses are relevant in its estimates and this 

is roughly equivalent to the bag model results. 

How large are the effects of 0,(-l? Because 07(-) includes the gluon field 

explicitly, there will be a gluonic contribution in any process, e.g. K + 21 as 

indicated in Fig. (3a). In addition, however, there is the valence quark contribution 

of Fig. (3b) which we now briefly discuss. From Fig. (3b) we have the typical 

amplitude: 
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d= c,‘-‘<,I 3(msTRo 
q PV 

q” $ dL - mdxLu 
W 

qv $ d,Iju’ (TI> 

= c7(‘)<~ ) 3 
( ,I( q 

(ms2 - md2)Tyu $ dL + 2msmdSTu ‘$dR) ju A (15) 

A A .A - (ms< ‘$dL + md< $dR)(p + p’jul 

where: 

A 
IP 

= Eyp 2 2 u+ay h” d + . . . 
u 2 

If we consider just the term in (16) containing ms2 we have 

d = e7(-)<mg g><sy 2 .PA> + . . . 
9 u 2 dLJ 

(16) 

(17) 

Note that the ms2/q2 is very sensitive to the long-wavelength (e.g. bag 

radius) components of hadrons. Also, g is evaluated at q2. Using a Fierz 

rearrangement and assuming all mass scales are comparable we obtain: 

< c7 07(-4 s c7 < m; $(q2)><“> s ~(l)C7<u> 
q 

(18) 

where <u> El 1. The gluonic contribution is harder to estimate. In ref. (3) it was 

argued that the ratio T(s + d + gluon)/l% + uud) calculated in the free quark model 

might give some estimate of this term. This would imply C7 should be multiplied 

by a factor of the order of 40 when comparing with CC, g,> or< C2 g2>, or a 

factor of about 5 when comparing with O5 or cP6. This is not far off the 

valence quark estimate of about a factor of 3 relative to o5 and 06. From 
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Table I we see that with operator matrix elements of this order O7 will not 

contribute significantly in 1 AS / = 1, 1 AI ( = y2 processes. 

In conclusion, we have completed the calculation of the effective ( AS ( = 1 

nonleptonic weak Hamiltonian. We find that the coefficient functions of the 

operators g5, o6 and 07(-l are determined by a short distance scale of I/me, 

and the coefficient of 67(+’ vanishes to two-loop order. Comparison with 

experiment requires estimates of the operator matrix elements. The valence quark 

plus vacuum insertion technique provides estimates of the contributions from the 

operators 01” and 02” yielding approximately l/5 of the observed ( AI ( = 112 

amplitude. The penguin operators q and 06, using the same technique, will 

give only l/IO to l/20 of the ) AI ) = K amplitude. The sigma term, 0,(-l, is 

finally even smaller yielding optimistically S l/IO of the penguin contribution 4 

and therefore only s l/100 of the total decay amplitude. Hence, the effects of 

CT,(-) are irrelevant for nonleptonic weak and related processes. 

Of course, the estimates of operator matrix elements are crude and it is 

desired to develop better techniques. Recently calculations of these matrix 

elements have been reported using current algebra and the bag model.9 These 

estimates are broadly in agreement with those found by vacuum insertion 

techniques that employ constituent quark masses. Again, caution is warranted for 

the results are very sensitive to the particular soft pion continuation employed. 

Assuming the operator matrix elements are reasonable, what could explain 

the discrepancy between theory and experiment in / AI\ = y2, (AS ( = 1 processes? 

One obvious gap in the theoretical analysis is the non-short distance piece. For the 

operators 0,” and 02” the momentum scale important in generating the 

coefficients C,” and C2” is 0 < K* < MW2. Due to the large logs (Mw2) which 
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appear in integrating over this range it may be a good approximation to include 

2 only the short distance contribution p < K2 < MW 2 m estimating these contribu- 

tions. 

However, as discussed in ref. (1) and section (3) the momentum scale relevant 

for the coefficients C5, C6 and C7 is only 0 < K2 < mc2. Our estimates include the 

range I-I 2 <K2.m 2 
C 

where perturbative calculations of the strong corrections 

hopefully make sense. Since this region only produces logs of mc ’ 2 it is less 1~ 

plausible we can justifiably ignore the integration region 0 < K2 <p 2; this may give 

further large contributions to C5, C6 and C7. 

Finally, there remains the possibility of substantial contributions from 

operators of dimension > 6. As discussed in ref. (I) these operators, though not 

enhanced by large logs, can arise at e(l) and may, by their sheer abundance, be 

important. As in ref. cl), we hope that this will not be the case due to their having 

small matrix elements. 
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APPENDIX 

In this appendix we carry out a detailed “off-shell” analysis, i.e., one in which 

we do not make use of the quark equations of motion, as a consistency check upon 

our much quicker “on-shell” calculation reported in the main body of the paper. We 

work here in Feynman gauge (though we have checked the “on-shell” calculation in 

Landau gauge and find it to be o-independent). This work illustrates the subtleties 

of operator renormalization incurred by the complexity of the allowed nongauge- 

invariant counterterms. 

The most general set of Becchi-Rouet-Stora allowed counterterms are the 

following8: 

Y1’ z $T((iD - ms)a2 f a2(iD - md))d 

Y2’ = 9 aiD - ms)8 uAu + Au a u(i@ - md))d 

Y 3f = -f S((iD - mS)Au a IJ ? 8 pA,,(iO - md))d 

Yqf = * ai5 - m,),d,$ f &$(iEi - md))d 

Y5’ : -$ ;((i@ - m,)&$ +8rR(iD - md))d 

There are also operators involving two explicit gauge fields, which will have 4-body 

vertices, but we do not need to know these since we only require the independent 

Z(quark-quark) and 3 (quark-quark-gluon) vertices. The above operators, Y. I (-‘, will 

not be involved in the ordinary weak Hamiltonians as they have the wrong CP. 

Henceforth we will refer only to Yi Z Yi (+’ . Also, the explicit chirality of the s and 

d fields is irrelevant to the following discussion and may be restored at the end. 

Note that the ops of eq. (A.1) are just the most general set of null operators ( ). 

(A.l(a,e)) 
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We also require the “Penguin” operator 

op = :yu $ d(DVGuv)A 

which is an allowed counterterm in 3-body diagrams, even though it is related to 

four-quark operators by the gluon equation of motion. In the present calculation 

we w!ill obtain no new “Penguin” contribution through gp in two loops, but rather 

the component of a null operator involving op - (sy, $d)(gjuA), where juA is 

the quark color current, is obtained. 

These operators are determined by the diagrams of Fig. 2 (in the absence of 

quark mass insertions) to order 1/MW4 and to order l/N2 in the l/N expansion of 

SUN:) of color. In Table III we give the projection of op and Yi onto the vertices 

of Fig. 4 (giving coefficients of additional vertices, such as q,A p,~, etc. is not 

useful, as the BRS invariance relates these to the vertices shown in the figure). We 

also give in Table III the results in Feynman gauge for the evaluation of Fig. 2 with 

a momentum routing as indicated in Fig. 2a. The coefficients of null operators 

change with different routings whereas the coefficients of physical operators 

obviously must not (we have checked this by rerouting q to the left in Fig. 2). In 

quoting the results, as in Table III an overall factor of 

g2/(16n2).g/(16n2).(log A2/mu2 - log R2/mc2) is understood. (Note that these are 

the next to leading logs for two loops; the leading logs only renormalize the original 

penguin diagrams and are already induded in the matrix, eq. (5).) 

From the results and coefficients in Table III, the coefficients of the 

operators, 0 P, Y,, as counterterms are determined: 

(A.2) 

N 
3N cy, = 0 ; cy2 = 2 ; cy3 = -7 ;cy =; 

4 
;cy =y;c 

5 
& = ; . (A.31 
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To obtain the coefficients of 07’, we must include the mass dependent 

(d = 5) vertices of Fig. 5. These are not a complete set, but are the only required 

vertices to obtain C 
Oil’) c rT1-’ 

(We have analyzed extra d = 5 vertices for 

consistency checks). 

The coefficients of these vertices arising from the above operators, and the 

results of computing the mass insertions in Fig. 2 are given in Table IV. Using the 

results for CY and C 
4 y5 

in (A.4), we see that C 0 I’ are determined as follows: 

4c 
o,+ = 

-y +;(cy4+cy5’ = 0 

4C& = -y +;cc, -cy ) = -; 
4 5 

Restoring the chirality and overall factors, we obtain the term: 

(A.4) 

mJ o sR uv T= 
xA UVAdL _ - AA uwAd 

mdSLouv 7’ J?f 

which occurs in the nonleptonic weak Hamiltonian. Here log J/has the form 

= log (mc2/(<p2> + mu2)) h w ere <p2> is a typical quark momentum in a hadron. 

Given the mixing of an operator to the penguin operator o5 to be f, the 

anomalous dimension of the same operator mixing to 07(-’ is determined to be: 

(p& ’ 4f * 07(-) 

(1611~) 

where we must, as usual, treat the quark mass effects carefully. 



- (u’ 
5 

- (u) 
c2 

-1.853 .I468 -.0171 

-2.363 .1299 -.0324 

-3.2970 .I096 -.0710 

‘6 c7 gwc7 

-.0019 -. 00032 -.000X2 

-.0061 -.00073 -.0026 

-.0219 - .00182 -.0107 

.25 2 

.5 2 

.75 2 

-1.853 .I468 -. 0407 - .0089 - .00060 -.0015 .25 6 

-2.363 .1299 -.0751 -.0238 -.00121 - .0043 .5 6 

-3.2970 .I096 -.I587 -.0697 -.00264 -.0172 .75 6 

c5 
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Table I 

A GeV mc GeV 

For $,” - u and C2 we choose MW = 70 GeV. For all estimates we choose u = 1 GeV. cl’ = (-c,‘) 

and C2’ = (-Se,‘). (Note that we choose different parameters than those used in ref. (11, Table 1.) 

Table II 

- (u) 
c1 

- (u) 
c2 A GeV mc GeV 

-1.923 .I307 -.0234 -.0028 .25 2 

-2.492 .I028 -.0498 -.0098 .5 2 

-3.589 .0618 -.I278 -.0405 .75 2 

-1.898 .0121 -.0528 -.0123 .25 6 

-2.454 .0919 -.I055 -.0348 .5 6 

-3.530 .0546 -.2488 -.1114 .75 6 

Recomputed coefficients for fl 
We assume MW = 70 GeV, and p = i 

- g4 using the method of ref. (2) for comparison. 
GeV. 
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Table III 
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I OP YI y2 Y3 Y4 Y5 Results 

16pz 0 I 0 0 0 0 0 

AA 
g p2Yu 1 1 

2 0 0 
1 0 

N 
-2 

iA 

z 

g Tqpd -1 0 1 
7 0 0 0 0 

AA 
g P2Yv 7 0 1 0 0 1 -1 0 

AA 
g P@ 7 0 0 I 1 0 2 0 

iA g-Z’Ep”&J v PY PO 0 0 0 j 0 0 -1 -- N 
2 

Coefficients in the operators of the indicated d = 6,2 and 3-body vertices; 0;’ have 
zero coefficients. This is the maximal set of independent d = 6 vertices. 

Table IV 

y2 y3 y4 y5 07(+’ 07(-’ Results 

i(mS + md)[4,Ypl 0 0 -- 1 2 _- 1 2 4 0 - N - 
2 

k(ms - md)[4,Yul 0 0 -- I 1 0 4 N 
2 7 2 
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FIGURE CAPTIONS 

Some two loop diagrams leading to 07’. 

The complete set of diagrams with leading (N) nonvanishing 

contributions in I/N expansion. 

Matrix element estimates of g7’. 

The independent d = 6 2- and 3-body vertices. 

The required d = 5 3-body vertices. 
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